Лекция 4. Общее определение вероятности

Вероятность  является количественной мерой возможности появления рассматриваемого события. Вероятность можно определить как функцию, заданную на подмножествах пространства .

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое.

Классическое определение вероятности события. Случаи равновероятных исходов

Классическое определение вероятности связано с определением благоприятствующего исхода. Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

Вероятность события равна отношению числа равновозможных благоприятствующих элементарных исходов к общему числу всех равновозможных и единственно возможных элементарных исходов данного испытания:

,

где – число благоприятствующих событию исходов;

       – общее число возможных исходов.

Из определения вероятности события следует, что , поэтому всегда выполняются неравенства , т.е. вероятность любого события есть неотрицательное число, не превышающее единицы.

Если , то событие невозможное.

Если , то событие достоверное.

Равновозможные элементарные события являются равновероятными, т.е. обладают одной и той же вероятностью.

Теорема.  Эквивалентные события имеют одинаковые вероятности, т.е. если , то .

Доказательство. Действительно, каждый элементарный исход события является таким же элементарным исходом для события и наоборот. В силу формулы справедливо равенство .

Если событие происходит всякий раз после того, как произошло событие , то говорят, что из события следует событие (). Например, для любых двух событий и справедливо и .

Теорема. Если , то .

Доказательство. Пусть события и включены в общую систему равновероятных элементарных исходов, причем и
– число благоприятных элементарных исходов соответственно для событий и , а – общее число элементарных исходов. Так как каждый элементарный исход для события является также элементарным исходом для события , то и, следовательно, .

(дополнение множества A до ) – противоположное событие. Это событие, состоящее в том, что A не происходит (логическое отрицание). Следовательно:

  • – достоверное событие;
  • – невозможное событие.

    Теорема.  Вероятность события , противоположного событию равна дополнению вероятности данного события до 1, т.е. .

    Доказательство. Пусть полная система равновозможных элементарных исходов содержит событий, из которых (), благоприятны событию . Тогда исходов неблагоприятны событию , т.е. благоприятствуют событию . Таким образом:

    .

    Классическое определение вероятности предполагает, что:

  • число элементарных исходов конечно;
  • эти исходы равновозможны.

    Однако, на практике встречаются испытания с бесконечным числом возможных исходов. Кроме того, нет общих методов, позволяющих результат испытания, даже с конечным числом исходов, представить в виде суммы равновозможных элементарных исходов. Поэтому применение классического определения вероятности весьма ограничено.