Надежность и доверительный интервал

До сих пор мы рассматривали точечные оценки, т.е. такие оценки, которые определяются одним числом. При выборке малого объема точечная оценка может значительно отличаться от оцениваемого параметра, что приводит к грубым ошибкам. В связи с этим при небольшом объеме выборки пользуются интервальными оценками.

Интервальной называют оценку, определяющуюся двумя числами – концами интервала. Пусть найденная по данным выборки статистическая характеристика служит оценкой неизвестного параметра . Очевидно, тем точнее определяет параметр , чем меньше абсолютная величина разности . Другими словами, если и , то чем меньше d, тем точнее оценка. Таким образом, положительное число d характеризует точность оценки.

Статистические методы не позволяют утверждать, что оценка удовлетворяет неравенству , можно говорить лишь о вероятности, с которой это неравенство осуществляется.

Надежностью (доверительной вероятностью) оценки по называют вероятность g, с которой осуществляется неравенство . Обычно надежность оценки задается заранее, причем, в качестве g берут число, близкое к единице – как правило, 0,95; 0,99 или 0,999.

Пусть вероятность того, что равна g:

.

Заменим неравенство равносильным ему двойным неравенством .

Это соотношение следует понимать так: вероятность того, что интервал заключает в себе (покрывает) неизвестный параметр Q, равна.

Таким образом, доверительным называют интервал , который покрывает неизвестный параметр с заданной надежностью .

Определение доверительных интервалов

Доверительный интервал для математического ожидания нормального распределения при известной дисперсии

Пусть количественный признак X генеральной совокупности распределен нормально, причем среднее квадратическое отклонение s этого распределения известно. Требуется оценить неизвестное математическое ожидание a по выборочному среднему . Найдем доверительные интервалы, покрывающие параметр a с надежностью .

Будем рассматривать выборочное среднее , как случайную величину (т.к. меняется от выборки к выборке), и выборочные значения , как одинаково распределенные независимые случайные величины (эти числа также меняются от выборки к выборке). Другими словами, математическое ожидание каждой из этих величин равно a и среднее квадратическое отклонение – s. Так как случайная величина X распределена нормально, то и выборочное среднее также распределено нормально. Параметры распределения равны:

.

Потребуем, чтобы выполнялось соотношение , где – заданная надежность.

Используем формулу .

Заменим X на и s на и получим:

,

где .

Выразив из последнего равенства , получим:

.

Так как вероятность P задана и равна , окончательно имеем:

.

Смысл полученного соотношения – с надежностью можно утверждать, что доверительный интервал покрывает неизвестный параметр a, причем точность оценки равна .

Таким образом, задача решена. Число определяется из равенства ; по таблице функции Лапласа находят аргумент , которому соответствует значение функции Лапласа, равное .

Следует отметить два момента: 1) при возрастании объема выборки n число убывает и, следовательно, точность оценки увеличивается, 2) увеличение надежности оценки приводит к увеличению (так как функция Лапласа – возрастающая функция) и, следовательно, к возрастанию , то есть увеличение надежности оценки влечет за собой уменьшение ее точности.

Если требуется оценить математическое ожидание с наперед заданной точностью и надежностью , то минимальный объем выборки, который обеспечит эту точность, находят по формуле , следующей из равенства .

Ищите квартиру в Кургане? Все самые удобные новостройки в Кургане по лучшим ценам! Найдите то, что Вам по душе!