Процессом чистого размножения называется такой процесс, у которого интенсивности всех потоков гибели равны нулю; аналогично процессом чистой «гибели» называется процесс, у которого равны нулю интенсивности всех потоков размножения.

Предельные (финальные) вероятности состояний для простейшего эргодического процесса гибели и размножения, находящегося в стационарном режиме, определяются по следующим формулам:


В качестве примера решения системы уравнений схемы гибели и размножения рассмотрим эксплуатацию автомобилей в крупной транспортной фирме.

Интенсивность поступления автомобилей на предприятие равна . Каждый поступивший на предприятие автомобиль списывается через случайное время . Срок службы автомобиля распределен по показательному закону с параметром . Процесс эксплуатации автомобилей является случайным процессом. – число автомобилей данной марки, находящихся в эксплуатации в момент времени .

Рассмотрим два случая: 1) нет ограничений на число эксплуатируемых автомобилей, 2) на предприятии может эксплуатироваться не более автомобилей.

Если в начальный момент на предприятии не было ни одного автомобиля, то решать систему уравнений нужно при начальных условиях:

.

Аналогично, если при эксплуатировалось автомобилей, то начальные условия имеют вид:


Решение системы дифференциальных уравнений Колмогорова при произвольном виде функции не может быть найдено в аналитическом виде. Однако при постоянных интенсивностях потоков гибели и размножения и конечном числе состояний будет существовать стационарный режим. Система в этом случае является простейшей эргодической системой.

Если интенсивности потока поступления и списания автомобилей постоянны, то оказываются справедливы формулы:

1. Максимальное число автомобилей не ограничено:

.

2. Математическое ожидание (среднее значение) числа эксплуатируемых автомобилей:

;

При ограниченном


В этом случае математическое ожидание равно:


Предельные вероятности

Следующей важной задачей является исследование вероятностей переходов системы при неограниченном увеличении числа .

Теорема Маркова. Пусть существует такое число шагов, при которых все вероятности строго положительны (отличны от нуля). Тогда для каждого состояния существует предельная вероятность его наступления, т.е. такое число , что независимо от исходного состояния имеет место равенство .

Смысл содержащегося в теореме утверждения интуитивно понятен: вероятность того, что система окажется в состоянии не зависит от предыстории системы и мало отличается от предельной величины . Найти эти вероятности можно следующим образом. Воспользуемся доказанным ранее равенством Маркова . Если перейти к пределу при , то получим . Если дополнить это уравнение условием нормировки , то получится система уравнений, решениями которой и будут искомые величины . Причем, несложно показать, что эта система определяет величины однозначно, т.е. полученные значения единственны.

У Вас планируется приятное событие? Свадьба, юбилей, выпускной вечер? Не знаете какой выбрать ресторан? Устали искать по множеству сайтов с неактуальной информацией? Мы рекомендуем Вам обратить свой взгляд сюда рестораны в центре москвы здесь Вы найдете каталог всех лучших заведений столицы, вся информация актуальна и обновляется, если это необходимо!