Элементы теории корреляции

Две (или несколько) случайных величин могут быть связаны либо функциональной, либо статистической зависимостью.

Строгая функциональная зависимость реализуется редко, так как случайные величины подвержены действию случайных факторов, причем среди них могут быть и общие для двух или нескольких величин. В этом случае возникает статистическая зависимость.

Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения другой. В частности, статистическая зависимость проявляется в том, что при изменении одной из величин изменяется среднее значение другой – в этом случае статистическая зависимость называется корреляционной.

Пример корреляционной зависимости: урожай зерна Y зависит от количества внесенных удобрений X. С одинаковых по площади участков при равных количествах внесенных удобрений снимают разные урожаи. Это связано с влиянием случайных факторов (осадки, температура воздуха и др.). Вместе с тем, средний урожай зависит от количества удобрений, т.е. Y связано с X корреляционной зависимостью.

При рассмотрении взаимосвязей, как правило, рассматривают одну из величин как независимую (объясняющую), а другую как зависимую (объясняющую). При этом изменение первой из них может служить причиной изменения другой. Например, рост дохода ведет к увеличению потребления; рост цены – к снижению спроса; снижение процентной ставки увеличивает инвестиции и т.д. Подобная зависимость не является однозначной в том смысле, что каждому конкретному значению объясняющей переменой может соответствовать не одно, а множество значений из некоторой области. Другими словами, каждому конкретному значению X соответствует некоторое вероятностное распределение зависимой переменной. Поэтому анализируют, как объясняющая переменная (или переменные) влияет (или влияют) на зависимую переменную «в среднем». Зависимость такого типа, выражаемая соотношением:


называется функцией регрессии Y на X. При рассмотрении зависимости двух случайных величин говорят о парной регрессии.

Зависимость нескольких переменных, выражаемую функцией , называют множественной регрессией.

Под регрессией понимается функциональная зависимость между объясняющими переменными и условным математическим ожиданием (средним значением) зависимой переменной Y, которая строится с целью предсказания (прогнозирования) среднего значения Y при фиксированных значениях независимых переменных.

Так как реальные значения зависимой переменной не всегда совпадают с ее средним значением и могут быть различными при данном X (или ), зависимость должна быть дополнена некоторым слагаемым e, которое, по существу, является случайной величиной. Получающиеся в результате соотношения:

или


называются регрессионными моделями (или уравнениями).

Решение задачи построения качественного уравнения регрессии, соответствующего эмпирическим данным и целям исследования, является достаточно сложным и многоступенчатым процессом. Его можно разбить на три этапа:

  • выбор формулы уравнения регрессии;
  • определение параметров выбранного уравнения;
  • анализ качества уравнения и проверка адекватности уравнения эмпирическим данным и, при необходимости, совершенствование уравнения.

Вы студент из Пензы? Надоело жить в общежитиях? Заканчиваете учебу? Не хотите переплачивать агентам? Тогда Вам сюда! Без комиссий и агентов! Лучшие цены, любые районы — аренда квартир посуточно в Пензе